2014年11月1日
LU分解求逆矩阵运算速度测试
LU分解是线性代数中矩阵分解的一种,可以将一个矩阵分解为上三角矩阵和下三角矩阵。那么即使该矩阵的逆矩阵时,可以直接对分解得到的上三角矩阵与下三角矩阵求逆矩阵,然后再求原矩阵的逆。关于LU分解与高斯消元法求逆矩阵效率的优劣,网络上有多种说法。维基百科中说LU分解优于高斯消元,也有的博客中说两种算法的运算时间基本相当,那实情呢?
本文的测试方式是在Visual studio2008建立工程,然后用Win32API 函数QueryPerformanceFrequency与QueryPerformanceCounter来测试LU分解的计算时间,可精确至微秒。本文的LU分解与上一篇高斯消元法求逆矩用的同一台电脑。
LU分解求逆矩阵(含测试代码):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
// LUMatrix.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include<iostream> #include <stdlib.h> #include <math.h> #include <stdio.h> #include <windows.h> static double a[4][4] = {{0.326,0.274,0.526,2.267}, {1.916,0.195,0.839,0.649}, {0.458,1.867,0.476,0.987}, {0.996,0.507,1.616,0.927}}; static double b[4] = {0}; static int anrow = 4; static double vv[4];// = new double[anrow]; static int indx[4];// = new int[anrow]; void lucmp(); void lubksb(double b[]); int _tmain(int argc, _TCHAR* argv[]) { double b[4]; double y[4][4]; double matrixA[4][4]; int i = 0; int j = 0; for (i = 0; i < 4; i ++) { for (j = 0; j < 4; j ++) { matrixA[i][j] = a[i][j]; } } LARGE_INTEGER nFreq; LARGE_INTEGER start,end; double eslaps; QueryPerformanceFrequency(&nFreq);//返回每秒嘀哒声的个数,即频率 QueryPerformanceCounter(&start); //获取开始时计数器的数值 lucmp(); for (int i = 0; i < anrow; i++) { for (int j = 0; j < anrow; j++) { b[j] = 0; } b[i] = 1.0; lubksb(b); for (int j = 0; j < anrow; j++) { y[j][i] = b[j]; } } QueryPerformanceCounter(&end); //获取结束时计数器的数值 eslaps=(double)(end.QuadPart-start.QuadPart)/(double)nFreq.QuadPart; //计数器滴答的次数与其频率的比值即为流逝的时间值 static double unitMatrix[4][4]; for (int i = 0; i < 4; i ++) { for (int j = 0; j < 4; j ++) { for(int k = 0; k < 4; k ++) { unitMatrix[i][j] = unitMatrix[i][j] + matrixA[i][k] * y[k][j]; } } } printf("MAT A IS:\n"); for (i=0; i<=3; i++) { for (j=0; j<=3; j++) printf("%13.4f",matrixA[i][j]); printf("\n"); } printf("\nInVerseMAT A- IS:\n"); for (i=0; i<=3; i++) { for (j=0; j<=3; j++) printf("%13.4f",y[i][j]); printf("\n"); } printf("\nMAT c- IS:\n"); for (i=0; i<=3; i++) { for (j=0; j<=3; j++) printf("%13.4f",unitMatrix[i][j]); printf("\n"); } printf("eslaps=%13.6f s\n",eslaps); return 0; } //原理:1.将带求逆矩阵分别分解为上三角矩阵U(对角线以下元素为0)和下三角矩阵L(对角线以上矩阵元素为0) // 2.对分解后的L阵(下三角矩阵)与U阵(上三角矩阵)进行求逆 // 3.L阵的逆矩阵与U阵的逆矩阵相乘,即可求得原来矩阵的逆。A逆 = (LU)逆 = U逆*L逆 void lucmp() { int n = 4, imax = 0; int i = 0; int j = 0; int k = 0; double big = 0.0; double temp = 0; double sum = 0; double dum = 0; double mid = 0; //用数组vv记录每一行的最大值的倒数 for (i = 0; i < n; i++) { big = 0.0; for (j = 0; j < n; j++) { temp = fabs(a[i][j]); if (temp > big) { big = temp; } } vv[i] = 1.0 / big; } //循环16次 //1.先将矩阵a变换为上三角矩阵,即对角线以下部分均转换为0 for(j = 0; j < n; j++) { for(i = 0; i < j; i++) { sum = a[i][j]; for(k = 0; k < i; k++) { sum -= a[i][k] * a[k][j]; } a[i][j] = sum; } // big = 0.0; for (i = j; i < n; i++) { sum = a[i][j]; for (k = 0; k < j; k++) { sum -= a[i][k] * a[k][j]; } a[i][j] = sum; dum = vv[i] * fabs(sum); if (dum >= big) { big = dum; imax = i; } } if (j != imax) { for (i = 0; i < n; i++) { mid = a[imax][i]; a[imax][i] = a[j][i]; a[j][i] = mid; } mid = vv[j]; vv[j] = vv[imax]; vv[imax] = mid; } indx[j] = imax; if (j != n - 1) { dum = 1.0/a[j][j]; for (i = j + 1; i < n; i++) { a[i][j] *= dum; } } } } void lubksb(double b[]) { int n = 4, ii = 0; // y for (int i = 0; i < n; i++) { int ip = indx[i]; double sum = b[ip]; b[ip] = b[i]; if (ii != 0) { for (int j = ii - 1; j < i; j++) { sum -= a[i][j] * b[j]; } } else { ii = i + 1; } b[i] = sum; } // x for (int i = n - 1; i >= 0; i--) { double sum = b[i]; for (int j = i + 1; j < n; j++) { sum -= a[i][j]*b[j]; } b[i] = sum / a[i][i]; } } |
该方式的运算结果:
由实验结果可知,LU分解与高斯约消元的计算时间是基本相当的。